当前位置:新闻中心 > 行业资讯
苏拉明钠制作免疫调节剂
2014-03-14 14:40:33
第三方平台
现在有一种比较新的治疗白癜风的方法就是免疫调节剂。
Protopic免疫调节剂是由一家日本公司生产用于对抗白斑处局部皮肤免疫反应的一种药膏,并在很多使用它的患者身上得到了不错的疗效。Protopic曾被用于治疗湿疹,并取得了较大的成功。
Protopic免疫调节剂暂时还未得到美国等发达国家对治疗白癜风的完全认可,但是如果调查工作者能够证实其具有有效的价值的话,Protopic免疫调节剂就会被大量使用。
免疫调节剂根据中国中医药研究中心调查研究显示会有比较多的副作用,且主要作用于皮损处的T细胞,而且也有较多的禁忌症,所以患者使用前一定要认真阅读使用说明书。
对于免疫功能低下、某些继发性免疫缺陷病及恶性肿瘤的治疗,该类药物都具有一定的疗效。
齐书钧专家指出其大多是生物制品,如卡介苗(BCG)、内毒素等;少数是一些人工合成的化学药物如左旋咪唑(lev-amisloe)和梯洛龙(tilorone)等。它们有的可以激活补体,有的可以促进巨噬细胞的活性,有的可以非特异性地增强T、B淋巴细胞反应,有的可诱导干扰素产生。
苏拉明钠可作为制作免疫调节剂的原料,在该药剂的制作方面发挥了极其重要的作用,在可预见的将来,随着科技的不断发展和病理药物的研究深入,苏拉明钠将发挥更为重要的作用。
上一篇
下一篇
如涉及转载授权,请联系我们!
相关标签:
苏拉明钠
相关阅读:
●
纳米材料的发展与前景
●
材料科学与工程专业介绍及就业前景
●
廉价高功率的锂硫电池问世

化工资讯网整理编辑:纳米材料,指的是材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料主要由于平均粒径微小、表面原子多、比表面积大、表面能高等特性,因而它的性质显示出较为独特的小尺寸效应、表面效应等特性,具有许多常规材料不能具有的优异性能。
纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。
当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能:1、尺寸效应;2、表面效应;3、量子隧道效应。
对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类:
1、高聚物/粘土纳米复合材料
由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。
2、高聚物/刚性纳米粒子复合材料
使用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是对其力学性能加以的另一种可行性方法。并且伴随着无机粒子微细化技术和粒子表面处理技术的发展,特别是近几年纳米级无机粒子的出现,塑料的增韧已经彻底冲破了以往在塑料中加入橡胶类弹性体的做法。所以采用纳米刚性粒子进行填充不仅会使韧性、强度得到提高,而且其性价比也将是普通材料不能比拟的。

化工资讯网整理编辑:材料科学与工程专业的就业前景,材料科学与工程专业的就业前景如何?请问材料科学与工程专业的就业前景怎么样?材料科学与工程专业专业的就业前景分析,材料科学与工程专业就业前景如何?材料科学与工程专业的英文翻译为:MaterialsScienceandEngineering,缩写为MSE。定义:材料科学与工程专业是以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将所学的知识应用于材料的合成、制备、结构、性能、应用等方面研究的一门学科。
业务培养目标
专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的高层次、高素质全面发展的科学研究与工程技术人才
业务培养要求
本专业学生主要是学习材料科学与工程的基础理论,学习与掌握材料的制备、组成、组织结构与性能之间关系的基本规律。并且受到金属材料、无机非金属材料、高分子材料、复合材料以及各种先进材料的制备、性能分析与检测技能的基本训练。以及掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发分析与检测技能的基本训练。还要掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发研究新材料和新工艺方面的基本能力。

化工资讯网整理编辑:过去的数十年来,锂离子电池的能量密度不断被科学人员提高,并被广泛应用于智能手机等领域。但锂离子电池一直需要笨重的阴极(一般由氧化钴等材料制成)来“收纳”锂离子,这便限制了电池能量密度的进一步提高。这便意味着,对诸如长距离电动汽车等需要更大能量密度的应用来说,锂离子电池已经显得有点力不从心。
因此,科学家们将目光投向了锂离子电池更纤瘦的“表妹”——锂硫电池身上,后者的阴极主要由硫(石油工业廉价的副产品)制成。硫的“体重”仅为钴的一半,因此,同样体积的硫收纳的锂离子数为氧化钴的两倍,这就使得锂硫电池的能量密度为锂离子电池的数倍。但硫阴极也有两大劣势:首先,硫容易与锂结合,形成的化合物会结晶;其次,不断的充放电循环使硫阴极容易破裂,因此,一块典型的锂硫电池经过几次循环就成了无用之物。
据物理学家组织网6月4日报道,在最新研究中,为了制造出稳定的硫阴极,研究人员将硫加热到185摄氏度,将硫元素由8个原子组成的环路融化成长链,随后,他们让硫链同二异丁烯(DIB,一种碳基塑料前体)混合,二异丁烯让硫链连接在一起,最终得到了一种混合聚合物。他们将这一过程称为“逆向硫化”,因为其同制造橡胶轮胎的过程类似,关键的区别在于:在轮胎中,含碳材料会聚集成一大块,硫则点缀其中。
科学家们解释道,添加二异丁烯使硫阴极不那么容易破碎,也阻止了锂硫化合物结晶。研究表明,硫和二异丁烯的最佳混合为二异丁烯占总质量的10%到20%。如果太少,无法保护阴极;如果太多,电化学性能不活跃的二异丁烯会降低电池的能量密度。测试表明,经过500次循环后,电池的能量密度仍为最初的一半多。亚利桑那大学的化学家杰弗里·佩恩表示,其他还处于实验阶段的锂硫电池也有同样的性能,但其制造成本高昂,很难进行工业化生产。
NIST的材料科学家克里斯托弗·索尔斯表示,尽管这样,这种锂硫电池短期内也是不会上市的,硫暴露在空气中很容易燃烧,所以,任何经济可行的锂硫电池都需要经过非常严格的相关安全测试,才能被投放市场。