当前位置:新闻中心 > 医化热点
芜湖首辆新能源公交车上路运行
2014-01-09 12:39:15
第三方平台
近日,芜湖市的首辆新能源公交车在45路公交线路上正式投入运行,这标志着芜湖新能源汽车推广应用市试点方案正式投入实施。预计在未来两年,安徽省芜湖市将加大新能源公交车的推广应用力度,并预计将在2015年底拥有450辆新能源公交车行驶在芜湖街头。
新能源公交车由奇瑞万达贵州客车股份有限公司生产研制,为插电式混合动力电动公交车,研发投产后经国家试验中心检验节能效果达64%,经过在贵阳市运行几个月后的统计数据计算,实际节省能源达35%以上。
和目前运行的公交车相比,新能源公交车行驶将更加平稳。未来两年,芜湖公交公司将在城北公交枢纽、城南高新区公交枢纽等规模较大的公交场站陆续配备新能源汽车充电桩,为投放450辆新能源公交车夯实基础。
推广新能源汽车,势必需要基础设施先行。现阶段芜湖已建成1座充电站,2个充电桩。根据新能源汽车推广应用试点方案,在2015年芜湖市将推广5110辆新能源汽车,届时芜湖市将新增充电桩6000个,新建公共标准化充电站10座。
上一篇
下一篇
如涉及转载授权,请联系我们!
相关标签:
能源环境
相关阅读:
●
生物医学:中科院张凯研究组发表新成果
●
最新研究发现:让癌症治疗更高效
●
稀土抛光粉种类生产原料生产工艺制备和应用

很多较为关键的生理活动是由细胞膜上的转运蛋白来介导的,很多生理活动离不开转运蛋白,比如细胞与外界的物质信息交换、代谢产物分泌、营养物质吸收等等。这些转运蛋白是由初级主动转运蛋白和次级转运蛋白所构成的。
MFS(主要协助转运蛋白超家族)是次级转运蛋白的一个典型代表,依靠质子或者电化学梯度作为驱动力转运包括小分子、多肽在内的多种底物。MFS在细胞物质交换和能量代谢过程中起到了关键性的作用,质子依赖性的寡肽转运蛋白(POT)是一类重要的MFS。与其他MFS一样,POT蛋白在转运底物时需要在两种主要构象之间进行转换。原核POT具有经典的12次跨膜螺旋,跨膜核心也分为两个结构域,还有两个跨膜螺旋插在两个结构域之间。
为了进一步了解POT的转运机制,中科院生物物理所的张凯研究组对大肠杆菌YbgH(一种POT蛋白)进行了研究。他们通过晶体结构向人们展示了YbgH面向细胞内时的构象,还分析了蛋白关键部分对构象改变的稳定和调控作用。这一成果于七月二十四日发表在Cell旗下的Structure杂志上。
研究显示,在蛋白形成的中央腔中,保守的氨基酸残基Glu21对于转运功能非常关键,是底物结合所诱导的质子化位点。MotifA作为构象转换的开关,稳定YbgH面向细胞外的状态。而两个结构域之间的跨膜螺旋,对于蛋白的转运活性也很重要。
科研人员表示:POT蛋白两个主要构象,他们的平衡在这项研究中表明是其转运活性的关键。

最近来自英国的科学家们发现,一种存在于靶向血管中的分子可以更加有效地治疗癌症,今天的《自然》(Nature)杂志上这项研究被完整地发表出来。这些科学家都来自英国Barts癌症研究所。
局部黏着斑激酶(FAK)是一种非受体酪氨酸激酶,参与细胞的迁移和增殖等活动。以往的研究证实在多种肿瘤组织和细胞系中存在FAK高表达现象,提示FAK可能是肿瘤治疗的一个有效靶点。
化疗和放疗是通过破坏DNA来杀死癌细胞。伦敦大学玛丽皇后学院Barts癌症研究所的这一研究小组发现,在化疗或放疗后FAK分子向机体发送了自我修复的信号。当研究人员除去黑色素瘤或肺癌模型中生长血管的FAK时,化疗和放疗都能更为有效地杀伤肿瘤。
研究人员还研究了来自淋巴瘤患者的样本。发现血管中FAK低水平的肿瘤,在治疗后越是可能获得完全缓解。这表明,开发出一些药物来除去癌症血管中的FAK有可能增强癌症治疗,并阻止癌症复发。
论文的主要作者、Barts癌症研究所的BernardoTavora博士说:“这项工作表明,癌症治疗的敏感性与我们的机体自身错误地设法保护癌症免于放疗和化疗引起的细胞杀伤效应有关。”
“尽管从血管中除去FAK不能破坏癌症本身,但它可以消除癌症利用来保护自身对抗治疗的障碍。”血管壁上的细胞会向肿瘤发送称作为细胞因子的化学信号,帮助它们抵抗DNA损伤获得修复。研究人员证实这一过程需要FAK,没有FAK不会传送这些信号,这会使得肿瘤对DNA损伤治疗更加的敏感。英国癌症研究所科学媒体部主管KatArney博士说:“这一令人兴奋的研究有可能阐明血管中的健康细胞是如何对抗癌症治疗的。”
他接着说:“小鼠身上完成的这项研究给科学家带来了很大的希望希望,可以增加癌症药物治疗的效果,使得癌细胞对科学家使用的药物敏感。”

抛光粉通常由氧化铈、氧化铝、氧化硅、氧化铁、氧化锆、氧化铬等组份组成,不同的材料的硬度不同,在水中的化学性质也不同,因此使用场合各不相同。氧化铝和氧化铬的莫氏硬度为9,氧化铈和氧化锆为7,氧化铁更低。
铈基稀土抛光粉是较为重要的稀土产品之一。因其具有切削能力强,抛光时间短、抛光精度高、操作环境清洁等优点,故比其他抛光粉(如Fe2O3红粉)的使用效果佳,而被人们称为"抛光粉之王".目前该产品在我国发展较快,应用日广,产量猛增,发展前景看好。
1.1稀土抛光粉的发展过程
红粉(氧化铁)是历史上最早使用的抛光材料,但它的抛光速度慢,而且铁锈色的污染也无法消除。随着稀土工业的发展,于二十世纪30年代,首先在欧洲出现了用稀土氧化物作抛光粉来抛光玻璃。在第二次世界大战中,一个在伊利诺斯州罗克福德的WF和BarnesJ公司工作的雇员,于1943年提出了一种叫做巴林士粉(Barnesite)的稀土氧化物抛光粉,这种抛光粉很快在抛光精密光学仪器方面获得成功。由于稀土抛光粉具有抛光效率高、质量好、污染小等优点,激起了美国等国家的群起研究。这样,稀土抛光粉就以取代传统抛光粉的趋势迅速发展起来。
国外于60年前开始生产稀土抛光粉,二十世纪90年代已形成各种标准化、系列化的产品达30多种规格牌号。
目前,国外的稀土抛光粉生产厂家主要有15家(年生产能力为200吨以上者)。其中,法国罗地亚公司年生产能力为2200多吨。是目前世界上最大的稀土抛光粉生产厂家。美国的抛光粉年产量能力达1500吨以上。日本生产稀土抛光粉的原料采用氟碳铈矿、粗氯化铈和氯化稀土三种,工艺上各不相同。日本稀土抛光粉的生产在烧结设备和技术上均具特色。1968年,我国在上海跃龙化工厂首次研制成功稀土抛光粉。随后西北光学仪器厂、云南光学仪器厂相继采用独居石为原料,研制成功不同类型稀土抛光粉。北京有色金属研究总院、北京工业学院等单位于1976年研制并推广了739型稀土抛光粉,1977年又研制成功了771型稀土抛光粉。1979年甘肃稀土公司研制成功了797型稀土抛光粉。目前国内已有14个稀土抛光粉生产厂家(年生产能力达30吨以上者),最大的一家年生产能力为2220吨(包头天骄清美稀土抛光粉有限公司)。但与国外相比仍有较大差距,主要是稀土抛光粉的产品质量不稳定,未能达到标准化、系列化,还不能完全满足各种工业领域的抛光要求,因此必须迎头赶上。
1.2稀土抛光粉的组成及分类
1.2.1以稀土抛光粉中CeO2量来划分:
稀土抛光粉的主要成分是CeO2,据其CeO2量的高低可将铈抛光粉分为两大类:一类是CeO2含量高的价高质优的高铈抛光粉,一般CeO2/TREO≥80%,另一类是CeO2含量低的廉价的低铈抛光粉,其铈含量在50%左右,或者低于50%,其余由La2O3,Nd2O3,Pr6O11组成。
对于高铈抛光粉来讲,氧化铈的品位越高,抛光能力越大,使用寿命也增加,特别是硬质玻璃长时间循环抛光时(石英、光学镜头等),以使用高品位的铈抛光粉为宜。低铈抛光粉一般含有50%左右的CeO2,其余50%为La2O3?SO3,Nd2O3?SO3,Pr6O11?SO3等碱性无水硫酸盐或LaOF、NdOF、PrOF等碱性氟化物,此类抛光粉特点是成本低及初始抛光能力与高铈抛光粉比几乎没有两样,因而广泛用于平板玻璃、显像管玻璃、眼镜片等的玻璃抛光,但使用寿命难免要比高铈抛光粉低。
1.2.2以稀土抛光粉的大小及粒度分布来划分:
稀土抛光粉的粒度及粒度分布对抛光粉性能有重要影响。
对于一定组分和加工工艺的抛光粉,平均颗粒尺寸越大,则玻璃磨削速度和表面粗糙度越大。在大多数情况下,颗粒尺寸约为4μm的抛光粉磨削速度最大。相反地,如果抛光粉颗粒平均粒度较小,则磨削量减少,磨削速度降低,玻璃表面平整度提高,标准抛光粉一般有较窄的粒度分布,太细和太粗的颗粒很少,无大颗粒的抛光粉能抛光出高质量的表面,而细颗粒少的抛光粉能提高磨削速度。此外,稀土抛光粉也可以根据其添加剂的不同种类来划分,稀土抛光粉生产技术属于微粉工程技术,稀土抛光粉属于超细粉体,国际上一般将超细粉体分3种:纳米级(1nm~100nm);亚微米级(100nm~1μm);微米级(1μm~100μm),据此分类方法,稀土抛光粉可以分为:纳米级稀土抛光粉、亚微米级稀土抛光粉及微米级稀土抛光粉3类,通常我们使用的稀土抛光粉一般为微米级,其粒度分布在1μm~10μm之间,稀土抛光粉根据其物理化学性质一般使用在玻璃抛光的最后工序,进行精磨,因此其粒度分布一般不大于10μm,粒度大于10μm的抛光粉(包括稀土抛光粉)大多用在玻璃加工初期的粗磨。小于1μm的亚微米级稀土抛光粉,由于在液晶显示器与电脑光盘领域的应用逐渐受到重视,产量逐年提高。纳米级稀土抛光粉目前也已经问世,随着现代科学技术的发展,其应用前景不可预测,但目前其市场份额还很小,属于研发阶段。
1.3抛光粉的生产原料
目前,我国生产铈系稀土抛光粉的原料有下列几种:(1)氧化铈(CeO2),由混合稀土盐类经分离后所得(w(CeO2)=99%);(2)混合稀土氢氧化物(RE(OH)3),为稀土精矿(w(REO)≥50%)化学处理后的中间原料(w(REO)=65%,w(CeO2)≥48%);(3)混合氯化稀土(RECl3),从混合氯化稀土中萃取分离得到的少铕氯化稀土(主要含La,Ce,Pr和Nd,w(REO)≥45%,w(CeO2)≥50%);(4)高品位稀土精矿(w(REO)≥60%,w(CeO2)≥48%),有内蒙古包头混合型稀土精矿,山东微山和四川冕宁的氟碳铈矿精矿。
以上原料中除第1种外,第2,3,4种均含轻稀土(w(REO)≈98%),且以CeO2为主,w(CeO2)为48%~50%.我国具有丰富的铈资源,据测算,其工业储量约为1800万吨(以CeO2计),这为今后我国持续发展稀土抛光粉奠定了坚实的基础,也是我国独有的一大优势,并可促进我国稀土工业继续高速发展。
1.4主要生产工艺及设备
1.4.1高铈系稀土抛光粉的生产
以稀土混合物分离后的氧化铈为原料,以物理化学方法加工成硬度大,粒度均匀、细小,呈面心立方晶体的粉末产品。其主要工艺过程为:原料→高温→煅烧→水淬→水力分级→过滤→烘干→高级铈系稀土抛光粉产品。
主要设备有:煅烧炉,水淬槽,分级器,过滤机,烘干箱。
主要指标:产品中w(REO)=99%,w(CeO2)=99%;稀土回收率约95%;平均粒经1μm~6μm(或粒度为200目~300目),晶形完好。该产品适用于高速抛光。这种高铈抛光粉最早代替了古典抛光的氧化铁粉(红粉)。
1.4.2中铈系稀土抛光粉的制备
用混合稀土氢氧化物(w(REO)=65%,w(CeO2)≥48%)为原料,以化学方法预处理得稀土盐溶液,加入中间体(沉淀剂)使转化成w(CeO2)=80%~85%的中级铈系稀土抛光粉产品。其主要工艺过程为:
原料→氧化→优溶→过滤→酸溶→沉淀→洗涤过滤→高温煅烧→细磨筛分→中级铈系稀土抛光粉产品。主要设备:氧化槽,优溶槽,酸溶槽,沉淀槽,过滤机,煅烧炉,细磨筛分机及包装机。
主要指标:产品中w(REO)=90%,w(CeO2)=80%~85%;稀土回收率约95%;平均粒度0.4μm~1.3μm.该产品适用于高速抛光,比高级铈稀土抛光粉进行高速抛光的性能更为优良。
1.4.3低铈系稀土抛光粉的制备
以少铕氯化稀土(w(REO)≥45%,w(CeO2)≥48%)为原料,以合成中间体(沉淀剂)进行复盐沉淀等处理,可制备低级铈系稀土抛光粉产品。其主要工艺过程为:
原料→溶解→复盐沉淀→过滤洗涤→高温煅烧→粉碎→细磨筛分→低级铈系稀土抛光粉产品。
主要设备:溶解槽,沉淀槽,过滤机,煅烧炉,粉碎机,细磨筛分机。主要指标:产品中w(REO)=85%~90%,w(CeO2)=48%~50%;稀土回收率约95%;平均粒径0.5μm~1.5μm(或粒度320目~400目)。该产品适合于光学玻璃等的高速抛光之用。用混合型的氟碳铈矿高品位稀土精矿(w(REO)≥60%,w(CeO2)≥48%)为原料,直接用化学和物理的方法加工处理,如磨细、煅烧及筛分等可直接生产低级铈系稀土抛光粉产品。
其主要工艺过程为:
原料→干法细磨→配料→混粉→焙烧→磨细筛分→低级铈系稀土抛光粉产品。主要设备:球磨机,混料机,焙烧炉,筛分机等。主要指标:产品中w(REO)≥95%,w(CeO2)≥50%;稀土回收率≥95%;产品粒度为1.5μm~2.5μm.该产品适合于眼镜片、电视机显象管的高速抛光之用。目前,国内生产的低级铈系稀土抛光粉的量最多,约占总产量的90%以上。
1.5稀土抛光粉的应用
由于铈系稀土抛光粉具有较优的化学与物理性能,所以在工业制品抛光中获得了广泛的应用,如已在各种光学玻璃器件、电视机显像管、光学眼镜片、示波管、平板玻璃、半导体晶片和金属精密制品等的抛光。
高铈系稀土抛光粉,主要适用于精密光学镜头的高速抛光。实践表明,该抛光粉的性能优良,抛光效果较好,由于价格较高,国内的使用量较少。
中铈系稀土抛光粉,主要适用于光学仪器的中等精度中小球面镜头的高速抛光。该抛光粉与高铈粉比较,可使抛光粉的液体浓度降低11%,抛光速率提高35%,制品的光洁度可提高一级,抛光粉的使用寿命可提高30%.目前国内使用这种抛光粉的用量尚少,有待于今后继续开发新用途。
低铈系稀土抛光粉,如771型适用于光学眼镜片及金属制品的高速抛光;797型和C-1型适用于电视机显象管、眼镜片和平板玻璃等的抛光;H-500型和877型适用于电视机显象管的抛光。此外,其它抛光粉用于对光学仪器,摄像机和照像机镜头等的抛光,这类抛光粉国内用量最多,约占国内总用量85%以上。
1.6稀土抛光粉的市场
在稀土抛光粉的消费中,日本是最大的消费者,每年约生产3550吨~4000吨抛光粉,产值35亿~40亿日元,还从法国、美国和中国进口部分抛光粉。其中最大的抛光粉消费市场是彩电阴极射线管。二十世纪90年代中期,日本阴极射线管的生产转向海外,而平面显示产品产量迅速增加,对铈基抛光粉的需求量也迅速增加。估计日本在液晶显示用平面显示器生产上消费的抛光粉约占其市场的50%.90年代以来,日本将其阴极射线管用抛光粉的生产技术和设备向海外转移,如:日本清美化学从1989年开始在海外生产阴极射线管用铈基抛光粉。
1989年在台湾建立了一家独资企业,1990年投入生产,目前的生产能力为每年1000吨。1997年又与我国包头钢铁公司合资在包头建立了一家专门生产彩电阴极射线管、电子管和平板玻璃抛光用抛光粉的企业。设计能力为每年1200吨,所用原料为高品位氟碳铈矿和富铈碳酸稀土。因此,新日本金属化学公司的阴极射线管用抛光粉因受来自中国大陆和台湾大量低价抛光粉的冲击也有意从事用于液晶显示用高性能抛光粉的生产。东北金属化学公司计划专门从事光学镜头和液晶显示屏用抛光粉的生产。