当前位置:新闻中心 > 行业资讯
食品药品监管总局公布复配食品添加剂检查结果
2014-05-06 17:22:38
第三方平台
复配食品添加剂是食品添加剂的重要类别,且品种多样,发展很快,在食品生产加工中使用广泛。为切实保障复配食品添加剂产品质量,国家食品药品监督管理总局于去年年底部署了全国复配食品添加剂获证生产企业专项监督检查工作。此次专项监督检查的重点是检查复配食品添加剂获证生产企业实际生产产品是否与许可范围一致;产品配方是否与许可一致;是否存在添加非食品添加剂和非食品原料行为;企业原辅料进货验收记录、生产过程控制记录、产品出厂检验记录和产品销售记录等质量管理制度落实情况;产品标签是否规范等。
各地食品药品监督管理部门按照总局统一部署,认真落实,主要采取实地检查和监督抽检等方式开展工作。检查结果显示:全国复配食品添加剂获证生产企业共计745家,通过专项监督检查,尚未发现企业无证生产、超范围生产、非法添加非食用物质等违法行为。
但在检查中也发现个别企业产品标签不规范,原辅料进货查验制度或生产管理记录制度不健全、不落实,出厂检验和销售记录不全等问题。针对上述存在的问题,国家食品药品监督管理总局已督促各地食品药品监管部门进一步强化监管,督促企业严格落实各项主体责任。同时,进一步有针对性地开展监督抽检,对于抽检查明存在产品不合格的企业,依法从严查处。下一步,国家食品药品监督管理总局将结合专项监督检查工作,研究制定坚强复配食品添加剂监管工作的指导意见,督促指导各地严格依法监管,构建长效机制。
上一篇
下一篇
如涉及转载授权,请联系我们!
相关标签:
添加剂
相关阅读:
●
搜索拓扑材料领域实现新突破:科学家建立拓扑材料基因库
近日从中国科学院物理研究所获悉,由该所研究员组成的科研团队及南京大学物理学院相关科研团队,独立发展出快速计算晶体材料拓扑性质的新方法,并用各自的方法在晶体材料库中找到了数千种具有拓扑性质的新材料。这一成果改变了拓扑量子材料这一研究方向的研究范式,将该方向的重点从“寻找新材料”推进到“研究新材料”。 拓扑量子态成研究热点近年来,拓扑量子态是物理学和材料科学领域的前沿热点。2016年诺贝尔物理学奖授予了三位科学家,以表彰他们发现物质拓扑相以及在拓扑相变方面作出的理论贡献。随着新的拓扑相出现,人们发现,拓扑材料具有常规材料没有的奇特物性,在电子、信息和半导体技术等方面有很大潜力。 据悉,目前科学家主要通过计算拓扑不变量寻找各种拓扑相,这种方法效率较低,所以已知的拓扑材料数目十分有限。因而,发展新的理论方法,高效寻找理想的、有实用价值的拓扑材料体系有着重要的科学价值和广阔的应用前景。万贤纲教授团队埋首钻研,终于在搜索拓扑材料这个领域实现突破:基于对称指标理论,发展了一套新的高效寻找拓扑材料的理论方法。 建立拓扑材料基因库据论文第一作者、南京大学物理学院博士研究生唐峰介绍,拓扑材料通常具有常规材料没有的奇特性质,以拓扑绝缘体为例,其表面导电,内部却绝缘,在电子、信息和半导体等领域具有广阔的应用空间。 但对于这类奇特的拓扑材料,科学家主要通过数学计算来寻找,这种方法效率较低,已知的拓扑材料数量也十分有限。“因此我们需要发展一套新的理论方法,用来高效寻找理想的、有实用价值的拓扑材料。”唐峰说。 万贤纲教授团队运用对称指标理论实现了这个目的,研究人员梳理了所有非磁材料,根据其是否拓扑进行分类,发现近50%的材料具有拓扑状态,进而将范围缩小到10897种拓扑材料,并挑选出近千个可能有实际应用价值的潜在目标。万贤纲教授表示,团队已将相关数据放在南京大学网站上共享,供全球研究者参考。
●
没掌握这些,气相色谱就白用了
气相色谱是实验室的最要设备之一,应用范围广,作用大,是实验分析工作者的好帮手。气相色谱的应用领域有很多,如石油,化工,医疗,环境,卫生等等。我们首先来看看气相色谱的特点是什么。 气相色谱的特点1、高灵敏度:可检出10-13克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。 2、高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。 3、高效能:可把组分复杂的样品分离成单组分。 4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。 5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。 气相色谱安装步骤色谱柱的正确安装才能保证发挥其最佳的性能和延长使用寿命。正确的安装请参考以下步骤:步骤1:检查气体过滤器、载气、进样垫和衬管等检查气体过滤器和进样垫,保证辅助气和检测器的用气畅通有效。如果以前做过较脏样品或活性较高的化合物,需要将进样口的衬管清洗或更换。 步骤2:将螺母和密封垫装在色谱柱上,并将色谱柱两端要小心切平。 步骤3:将色谱柱连接于进样口上色谱柱在进样口中插入深度根据所使用的GC仪器不同而定。正确合适的插入能最大可能地保证试验结果的重现性。通常来说,色谱柱的入口应保持在进样口的中下部,当进样针穿过隔垫完全插入进样口后如果针尖与色谱柱入口相差1-2cm,这就是较为理想的状态。(具体的插入程度和方法参见所使用GC的随机手册)避免用力弯曲挤压毛细管柱,并小心不要让标记牌等有锋利边缘的物品与毛细柱接触摩擦,以防柱身断裂受损。将色谱柱正确插入进样口后,用手把连接螺母拧上,拧紧后(用手拧不动了)用扳手再多拧1/4-1/2圈,保证安装的密封程度。因为不紧密的安装,不仅会引起装置的泄漏,而且有可能对色谱柱造成永久损坏。 步骤4:接通载气当色谱柱与进样口接好后,通载气,调节柱前压以得到合适的载气流。 步骤5.将色谱柱连接于检测器上其安装和所需注意的事项与色谱柱与进样口连接大致相同。如果在应用中系统所使用的是ECD或NPD等,那么在老化色谱柱时,应该将柱子与检测器断开,这样检测器可能会更快达到稳定。 步骤6:确定载气流量,再对色谱柱的安装进行检查注意:如果不通入载气就对色谱柱进行加热,会快速且永久性的损坏色谱柱。 步骤7:色谱柱的老化色谱柱安装和系统检漏工作完成后,就可以对色谱柱进行老化了。对色谱柱升至一恒定温度,通常为其温度上限。特殊情况下,可加热至高于最高使用温度10-20℃左右,但是一定不能超过色谱柱的温度上限,那样极易损坏色谱柱。当到达老化温度后,记录并观察基线。初始阶段基线应持续上升,在到达老化温度后5-10分钟开始下降,并且会持续30-90分钟。当到达一个固定的值后就会稳定下来。如果在2-3小时后基线仍无法稳定或在15-20分钟后仍无明显的下降趋势,那么有可能系统装置有泄漏或者污染。遇到这样的情况,应立即将柱温降到40℃以下,尽快的检查系统并解决相关的问题。如果还是继续的老化,不仅对色谱柱有损坏而且始终得不到正常稳定的基线。 一般来说,涂有极性固定相和较厚涂层的色谱柱老化时间长,而弱极性固定相和较薄涂层的色谱柱所需时间较短。而PLOT色谱柱的老化方法有各不相同。PLOT柱的老化步骤:HLZPora系列250℃,8小时以上Molesieve(分子筛)300℃12小时Alumina(氧化铝)200℃8小时以上由于水在氧化铝和分子筛PLOT柱中的不可逆吸附,使得这两种色谱柱容易发生保留行为漂移。当柱子分离过含有高水分样品后,需要将色谱柱重新老化,以除去固定相中吸附的水分。 步骤8:设置确认载气流速对于毛细管色谱柱,载气的种类首选高纯度氮气或氢气。载气的纯度最好大于99.995%,而其中的含氧量越少越好。如果您使用的是毛细管色谱柱,那么依照载气的平均线速度(cm/sec),而不是利用载气流量(ml/min)来对载气做出评价。因为柱效的计算采用的是载气的平均线速度。推荐平均线速度值:氮气:10-12cm/sec氢气:20-25cm/sec载气杂质过滤器在载气的管线中加入气体过滤装置不仅可以延长色谱柱寿命,而且很大程度的降低了背景噪音。建议最好安装一个高容量脱氧管和一个载气净化器。使用ECD系统时,最好能在其辅助气路中也安装一个脱氧管。 步骤9:柱流失检测在色谱柱老化过程结束后,利用程序升温作一次空白试验(不进样)。一般是以10℃/min从50℃升至最高使用温度,达到最高使用温度后保持10min。这样我们就会的到一张流失图。这些数值可能对今后作对比试验和实验问题的解决有帮助。在空白试验的色谱图中,不应该有色谱峰出现。如果出现了色谱峰,通常可能是从进样口带来的污染物。如果在正常的使用状态下,色谱柱的性能开始下降,基线的信号值会增高。另外,如果在很低的温度下,基线信号值明显的大于初始值,那么有可能是色谱柱和 GC系统有污染。其他:色谱柱的保存用进样垫将色谱柱的两端封住,并放回原包装。在安装时要将色谱柱的两端截去一部分,保证没有进样垫的碎屑残留于柱中。 注意:当空气中氢气的含量在4-10%时,就有爆炸的危险。所以一定要保证实验室有良好的通风系统。
●
中科院研究团队研发出新型三维碳神经支架
近日由中国、意大利、美国学者组成的一个国际研究团队研发出一种三维石墨烯-碳纳米管复合网络支架。这种生物支架能很好地模拟大脑皮层结构,未来,研究者们不仅能借助支架清晰、直观地看到脑部疾病的发展过程,还有望将其植入大脑,用于阿尔茨海默症等多种神经退行性疾病的治疗。 基于石墨烯和碳纳米管的生物材料具有优异的生物相容性、突出的导电性以及良好的可操作性和机械稳定性,在神经电级、组织工程和再生医学等领域获得了较广泛的应用。碳纳米管的一维独特结构使其能够与细胞形成紧密联系从而促进神经电信号传导;三维石墨烯具有优异的三维可操作性,可为细胞的生命活动提供良好的三维微环境。 碳神经支架是什么碳神经支架是一种基于石墨烯、碳纳米管等新型超微碳材料的生物支架。它通过模拟体内复杂的微环境,构建神经干细胞和原代神经元的生长环境。科研人员发现,相比在二维的培养皿中观察、培养神经细胞,三维支架更接近脑部实际环境,神经干细胞的增殖和定向分化效率也大大提高。 此次研究中,合作组成员用石墨烯模拟大脑内部四通八达的三维框架,用更微小的碳纳米管模拟神经元细胞,成功构建出“互联互通”的三维复合碳神经支架。利用这种支架培养原代大脑皮层神经元,能更好地模拟大脑皮层的复杂性。研究者将脑胶质瘤细胞“种植”在构建的大脑皮层模型中,结合先进的成像和分析技术,就能清晰看到肿瘤细胞的发展进程。此外,研究者还构建了药物治疗模型,利用三维支架观察不同抗癌药物对肿瘤的实际抑制效果。 碳神经支架有望治疗多种疾病“新支架不仅能用于药物的筛选,未来还可能被移植进人体,用于阿尔茨海默症、帕金森综合征等疾病的治疗。”参与此项研究的中科院纳米-生物界面重点实验室研究员程国胜说,针对多种神经退行性疾病的治疗,医学界已经提出移植神经干细胞的构想。三维碳神经支架将是很好的载体,它能帮助医生将神经干细胞精准放置到病变地点,并帮助其增殖、分化,以实现治疗的目的。 碳纳米管在石墨烯表面的原位生长,使得复合支架具有优异的导电性和机械稳定性,实现了碳纳米管和石墨烯的三维几何,机械和电学互联互通。利用这种复合支架培养原代大脑皮层神经元,其能更好地模拟大脑皮层的复杂性。将脑胶质瘤细胞种植在构建的大脑皮层模型中,利用先进的成像和分析技术,系统研究了单胶质瘤细胞在三维空间上的速度分步,成功构建了脑胶质瘤的运动模型。对于新型药物的筛选以及进一步的精准医疗具有重要意义。