当前位置:新闻中心 > 劳保资讯
生物科学:水稻衰老调控分子机制被发现
2014-06-25 17:09:24
第三方平台
化工资讯网整理编辑:梁成真博士(来自中国科学院遗传发育所植物基因组)通过相关研究,首次在科学界阐明了水稻叶片衰老的分子调控机制。由此一发现,人类可显著地延缓水稻叶片衰老,并且延长灌浆时间,以此通过提高水稻的结实率和千粒重的方法,使得水稻产量大大提高。
上述研究成果6月20日在线发表在《美国国家科学院院刊》上。衰老是生物有机体发育的必经阶段,更是生命体命运走向的关键转折点。植物过早启动衰老进程会对植物正常的营养利用和发育产生不良影响。很多杂交水稻品种存在叶片早衰现象,严重阻碍产量,且破坏灌浆的形成,最终降低稻米品质。理论上推算,有早衰现象的水稻品种在正常生活周期中叶片衰老每推迟一天即可增产2%,生产实践上也可达到1%左右。因此,揭示植物衰老的分子调控机制是农业生产需要迫切解决的重大应用课题。
叶片衰老在很大程度上受植物发育年龄和体内信号因子的调节。脱落酸(ABA) 是植物五大激素之一,在植物衰老时,体内ABA含量急剧升高,被认为是一种重要的衰老促进激素。然而,水稻中ABA合成和信号传导相关基因的突变体并未表现出延迟衰老的表型。因此,人们一直困惑ABA是如何参与调控植物的衰老进程。梁成真通过研究,发现了ABA介导植物衰老信号通路的重要成分OsNAP。OsNAP受到ABA的特异性诱导,通过直接调控叶绿素降解、营养再转运及其它衰老相关基因的表达调控叶片的衰老进程。
人们因为这个研究成果,在理论上对ABA在介导植物衰老机制上提升了理解力,也为水稻(特别是杂交水稻)乃至其它作物在生产上存在的后期早衰问题提供了不错的解决方案。
上一篇
下一篇
如涉及转载授权,请联系我们!
相关标签:
生物科学
相关阅读:
●
柱色谱类型有哪些,如何操作
●
金属指示剂的变色原理是什么,常用的有哪些
●
二氧化钛纳米颗粒影响巨噬细胞功能新机制

化学词典告诉你柱色谱类型以及操作。柱色谱法,又称层析法。是一种以分配平衡为机理的分配方法。色谱体系包含两个相,一个是固定相,一个是流动相。当两相相对运动时,反复多次的利用混合物中所含各组分分配平衡性质的差异,最后达到彼此分离的目的。 柱色谱类型色谱法按固定的状态可分为柱色谱.平板色谱和棒色谱三种而实验室中最常用的是柱层析和薄层层析,以及它们之间的配合应用。⑴吸附剂的填装①干法将吸附剂一次加入色谱柱,振动管壁使其均匀下沉,然后沿管壁缓缓加入洗脱剂;或在色谱柱下端出口处连接活塞,加入适量的洗脱剂,旋开活塞使洗脱剂缓缓滴出,然后自管顶缓缓加入吸附剂,使其均匀地润湿下沉,在管内形成松紧适度的吸附层。操作过程中应保持有充分的洗脱剂留在吸附层的上面。②湿法将吸附剂与洗脱剂混合,搅拌除去空气泡,徐徐倾入色谱柱中,然后加入洗脱剂将附着管壁的吸附剂洗下,使色谱柱面平整。等到填装吸附剂所用洗脱剂从色谱柱自然流下,液面和柱表面相平时,即加供试品液。⑵供试品的加入除另有规定外,将供试品溶于开始洗脱时使用的洗脱剂中,再沿色谱管壁缓缓加入,注意勿使吸附剂翻起。或将供试品溶于适当的溶剂中,与少量吸附剂混匀,再使溶剂挥发去尽使呈松散状,加在已制备好的色谱柱上面。如供试品在常用溶剂中不溶,可将供试品与适量的吸附剂在乳钵中研磨混匀后加入。⑶洗脱除另有规定外,通常按洗脱剂洗脱能力大小递增变换洗脱剂的品种和比例,分别分部收集流出液,至流出液中所含成分显著减少或不再含有时,再改变洗脱剂的品种和比例。操作过程中应保持有充分的洗脱剂留在吸附层的上面。柱色谱操作方法1.装柱色谱柱的大小规格由待分离样品的量和吸附难易程度来决定。一般柱管的直径为0.5~l0cm,长度为直径的10~40倍。填充吸附剂的量约为样品重量的20~50倍,柱体高度应占柱管高度的3/4,柱子过于细长或过于粗短都不好。装柱前,柱子应干净、干燥,并垂直固定在铁架台上,将少量洗脱剂注入柱内,取一小团玻璃毛或脱脂棉用溶剂润湿后塞入管中,用一长玻璃棒轻轻送到底部,适当捣压,赶出棉团中的气泡,但不能压得太紧,以免阻碍溶剂畅流(如管子带有筛板,则可省略该步操作)。再在上面加入一层约0.5cm厚的洁净细砂,从对称方向轻轻叩击柱管,使砂面平整。常用的装柱方法有干装法和湿装法两种。⑴干装法:在柱内装入2/3溶剂,在管口上放一漏斗,打开活塞,让溶剂慢慢地滴入锥形瓶中,接着把干吸附剂经漏斗以细流状倾泻到管柱内,同时用套在玻璃棒(或铅笔等)上的橡皮塞轻轻敲击管柱,使吸附剂均匀地向下沉降到底部。填充完毕后,用滴管吸取少量溶剂把粘附在管壁上的吸附剂颗粒冲入柱内,继续敲击管子直到柱体不再下沉为止。柱面上再加盖一薄层洁净细砂,把柱面上液层高度降至0.1~lcm,再把收集的溶剂反复循环通过柱体几次,便可得到沉降得较紧密的柱体。⑵湿装法:基该方法与干装法类似,所不同的是,装柱前吸附剂需要预先用溶剂调成淤浆状,在倒入淤浆时,应尽可能连续均匀地一次完成。如果柱子较大,应事先将吸附剂泡在一定量的溶剂中,并充分搅拌后过夜(排除气泡),然后再装。无论是干装法,还是湿装法,装好的色谱柱应是充填均匀,松紧适宜一致,没有气泡和裂缝,否则会造成洗脱剂流动不规则而形成“沟流”,引起色谱带变形,影响分离效果。2.加样将干燥待分离固体样品称重后,溶解于极性尽可能小的溶剂中使之成为浓溶液。将柱内液面降到与柱面相齐时,关闭柱子。用滴管小心沿色谱柱管壁均匀地加到柱顶上。加完后,用少量溶剂把容器和滴管冲洗净并全部加到柱内,再用溶剂把粘附在管壁上的样品溶液淋洗下去。慢慢打开活塞,调整液面和柱面相平为止,关好活塞。如果样品是液体,可直接加样。3.洗脱与检测将选好的洗脱剂沿柱管内壁缓慢地加入柱内,直到充满为止(任何时候都不要冲起柱面覆盖物)。打开活塞,让洗脱剂慢慢流经柱体,洗脱开始。在洗脱过程中,注意随时添加洗脱剂,以保持液面的高度恒定,特别应注意不可使柱面暴露于空气中。在进行大柱洗脱时,可在柱顶上架一个装有洗脱剂的带盖塞的分液漏斗或倒置的长颈烧瓶,让漏斗颈口浸入柱内液面下,这样便可以自动加液。如果采用梯度溶剂分段洗脱,则应从极性最小的洗脱剂开始,依次增加极性,并记录每种溶剂的体积和柱子内滞留的溶剂体积,直到最后一个成分流出为止。洗脱的速度也是影响柱色谱分离效果的一个重要因素。大柱一般调节在每小时流出的毫升数等于柱内吸附剂的克数。中小型柱一般以1~5滴/秒的速度为宜。洗脱液的收集,有色物质,按色带分段收集,两色带之间要另收集,可能两组分有重叠。对无色物质的接收,一般采用分等份连续收集,每份流出液的体积毫升数等于吸附剂的克数。若洗脱剂的极性较强,或者各成分结构很相似时,每份收集量就要少一些,具体数额的确定,要通过薄层色谱检测,视分离情况而定。现在,多数用分步接受器自动控制接收。洗脱完毕,采用薄层色谱法对各收集液进行鉴定,把含相同组分的收集液合并,除去溶剂,便得到各组分的较纯样品。

化学词典告诉你金属指示剂的变色原理以及常用的金属指示剂。金属指示剂又称金属离子指示剂,是络合滴定法中使用的指示剂。指示终点的原理是在一定pH值下,指示剂与金属离子络合,生成与指示剂游离态颜色不同的络离子。 金属指示剂的变色原理在配位滴定中,常用指示剂确定终点,以指示溶液中金属离子浓度的变化,这种指示剂称为金属离子指示剂,简称金属指示剂(以符号In表示)。金属指示剂是显色剂,能与被滴定的金属离子M生成有色配合物MIn,而Mln与指示剂本身的颜色不同.且MIn的稳定性稍低于配合物MY的稳定性。滴定开始时,溶液中的部分金属离子与指示剂形成一种与指示剂本身颜色不同的配合物MIn,溶液呈现MIn的颜色。M+In(指示剂色)=====MIn(配合物色)随着滴定剂Y的加入,溶液中游离的M离子逐步被Y配合,由于MIn的稳定性弱于MY的稳定性,当达到化学计量点时,已与In配合的M离子也被Y夺取,释放出指示剂In,从而引起溶液颜色的变化。MIn+Y(指示剂色)=====MY+In(配合物色)常用的金属指示剂(1)铬黑T指示剂:简称EBT,是一个灵敏的金属指示剂,化学名称为1-(1-羟基-2-萘偶氮基)-6-硝基-2萘酚-4-磺酸钠。铬黑T为黑褐色粉末,能溶于水,在不同pH时颜色不同,pH<6.3呈酒红色,ph为6.3-11.6时呈蓝色,ph>11.6呈橙色,实验证明铬黑T最适宜pH范围是9—11.5。使用pH=10的缓冲溶液,用EDTA直接滴定Ca、Mg等离子时,铬黑T是良好的指示剂。固体铬黑T稳定,其水溶液却只能保持几天。除了使用其水溶液外,尚可将铬黑T固体与干燥NaCl按1∶100混合研细,密闭保存。(2)钙指示剂简称NN指示剂,化学名称是2-羟基-1-2(2-羟基-4-磺酸-1-萘偶氮基)-3-萘甲酸,NN指示剂为黑色粉末,其水溶液或乙醇溶液都不稳定,一般取固体试剂用干燥NaCl粉末稀释后使用。NN指示剂在pH7左右为紫红色,pH为12-13时呈蓝色。钙指示剂与Ca显红色,灵敏度高,在pH12-13用FDTA滴定Ca时,将指示剂游离出来,终点显蓝色。

元素百科为您介绍二氧化钛纳米颗粒影响巨噬细胞功能新机制。由于独特的物理和化学性质,纳米颗粒被广泛应用于食品、化妆品、药品等领域。二氧化钛(TiO2)纳米颗粒更是存在于饮料、酱油等多种与日常生活息息相关的产品之中。然而,二氧化钛纳米颗粒对人体健康的影响并未完全清晰。 近日,中国科学院上海生命科学研究院(人口健康领域)营养代谢与食品安全重点实验室尹慧勇研究组研究生陈群和王宁宁等在研究员尹慧勇的指导下,通过对蛋白质组学的数据分析,发现用二氧化钛纳米颗粒处理巨噬细胞,可导致细胞膜重构和激活炎症反应。利用透射电子显微镜,研究人员观察到二氧化钛纳米颗粒通过内吞途径被困在多泡体(Multi-vesicularBodies,MVB)中。基于13C示踪技术的代谢流分析表明,二氧化钛纳米颗粒显著降低了三羧酸循环途径的代谢流,并且还会引起线粒体活性氧ROS的增加,减少ATP的生成,降低心磷脂的含量,从而造成线粒体的功能障碍。进一步的研究表明,二氧化钛纳米颗粒可以通过增加TNF-α、iNOS和COX-2的mRNA水平而激活炎症反应,代谢组学分析也显示COX-2的代谢产物,包括前列腺素PGD2、PGE2和15d-PGJ2等的产生显著增加。此外,二氧化钛纳米颗粒也引起巨噬细胞吞噬功能的明显降低。该研究利用蛋白质组学结合脂质组学技术,揭示了二氧化钛纳米颗粒可以通过激活炎症反应和造成线粒体的功能障碍来影响巨噬细胞的功能,提示长期暴露可能对人体健康产生潜在的影响。