当前位置:新闻中心 > 行业资讯
材料应用功能广泛的纳米纸介绍
材料应用功能广泛的纳米纸介绍
2014-08-21 16:09:34
第三方平台
最近,一种新型的纳米纸被来自浙江大学的科学家研制出来,其主要组成材料是滤纸以及二氧化钛薄膜。此一新型纳米纸可以和多种化学分子相结合,并且能够展现出很多优异的特性,在材料应用上使用前景广泛。
应用功能广泛的纳米纸介绍!
“通过前体物溶液浸润再水解的方式,可以让二氧化钛薄膜包裹在滤纸的纳米纤维上,之后再用含有其他化学分子的溶液继续浸润纳米纸,就能制造出不同用途的新材料。”浙江大学化学系教授黄建国介绍,肉眼看来,纳米纸的外观与普通滤纸没有差别,但功能却有了极大差异。黄建国说:“滤纸由无数的纤维素纤维组成,自然形成的精细结构非人力所及,而二氧化钛水解后产生的羟基具有足够的化学活性,能够和绝大多数的分子相结合,这两个材料的特性共同决定了纳米纸‘万金油’的特点。”
不久前,黄建国在纳米纸纤维上“铺”了一层名为“萘胺”的染料,让纳米纸变身为一遇亚硝酸盐就变色的检测试纸。“这种纳米纸轻薄灵敏,色彩的浓淡则表明了亚硝酸盐浓度的高低,对于检测食品中的亚硝酸盐浓度非常有效。”这项研究于今年2月在线发表于英国《皇家化学学会进展》期刊。
他介绍,纳米纸还可用于检测水体中汞离子、氟离子的含量,甚至用于检测DNA的特定序列段。而将碳氟链化合物与纳米纸组合而成的防菌纳米纸,还可用于食品保鲜与包装。由于碳氟链化合物不亲油,也不亲水,于是纳米纸也变得“油水不沾”,细菌也因此无法在纳米纸上停留。
上一篇
下一篇
如涉及转载授权,请联系我们!
相关标签:
材料及新材料,
纳米材料
相关阅读:
●
超积累硒植物机理研究取得新进展
●
动力学改善的镁硫电池研究取得进展
●
三维打印构建骨/软骨一体化修复支架研究获进展

元素百科为您介绍超积累硒植物机理研究取得新进展。硒是人和动物所必需的营养元素,但最低需求量与中毒剂量之间的范围很窄。植物是人和动物摄取硒的主要来源,国际著名生物化学家Salt认为,硒积累植物可以解决饮食硒缺乏和土壤硒过剩的医学地质问题。一方面,因为硒积累植物可用来提取人体容易吸收的有机硒,用于改善缺硒地区人群饮食硒的不足(食物硒营养强化),硒积累植物是转基因技术开发富含抗癌硒化合物农作物的基因来源;另一方面,硒积累植物是用于清除生态环境硒污染的植物修复技术的主要植物材料。因此,硒超积累植物在改善人体健康方面比其它重金属超积累植物有更大的用途和研究价值。因不同物种吸收富集硒的能力千差万别,筛选具有超常吸收、富集硒性能的硒超积累植物是成功应用硒的生物强化和植物修复的基础。 2007年,中国科学院地球化学研究所研究员邵树勋等在湖北恩施土家族苗族自治州发现我国第一个硒超积累植物碎米荠(Cardamineviolifolia)。自从碎米荠超积累植物被发现以来,碎米荠超积累植物在湖北恩施州被大规模种植开发利用,用于提取补硒食品添加剂,创造出巨大的经济效益,为当地农民脱贫致富发挥了重要作用。超积累植物吸收、富集硒的机理是开发硒生物强化及植物修复技术的理论基础,一直是国际上硒学术界研究极为关注的热点科学问题。此后,邵树勋课题组与匈牙利圣伊万斯特大学博士MihalyDernovics合作,利用匈牙利圣伊万斯特大学先进的HPLC-ICP-MS、LC-ESI-QTOF-MS技术方法研究碎米荠中硒的富集机理,从总硒含量达3.7g/kg的超积累硒碎米荠植物中测定出占总硒40%的硒羊毛硫氨酸(Selenolanthionine),图1、2为Selenolanthionine的SCX–ICP-MSchromatograms液相色谱图。硒超积累植物中如此高含量的有机硒化合物Selenolanthionine为国际上首次发现,取得了超积累植物通过转化贮存为Selenolanthionine的耐受硒解毒机制的新认识,为揭示碎米荠超常富集硒的机理奠定了硒代谢的理论基础。硒羊毛硫氨酸在生物制药方面有重要用途,碎米荠超积累植物富含大量硒羊毛硫氨酸的发现,为进一步开发恩施州超积累硒植物制造新型抗癌、抗菌药物提供了重要理论依据。相关研究成果发表在BiochimicaetBiophysicaActa上,研究工作得到了国家自然科学基金项目的资助。

元素百科为您介绍动力学改善的镁硫电池研究取得进展。电动汽车和智能电网等领域对电池能量密度、安全性要求不断提高,发展低成本、高能量密度、安全的新型二次电池愈发迫切。在诸多新型电池体系中,镁电池由于负极体积比容量高(3833mAh/cm3)、资源丰富、在沉积/剥离中不易形成枝晶等优点,受到广泛关注。但镁离子体积小、电荷密度大、极化作用强等特点,极大限制了可供二价镁离子可逆脱嵌的正极材料选择。由于缺乏高电位的正极结构和电解液配方原型,通过发展高电位的嵌入型镁电池研究进展缓慢。此外,还有一种可行的路径是构筑适中电位的基于大容量转换反应的镁基电池体系,如Mg-S电池(理论能量密度高达1722Wh/kg),但Li-S电池中的成功策略无法简单复制到Mg-S体系中,已报道的镁硫电池电位极化、倍率和循环性能仍然较差。 为了避免二价镁离子缓慢晶格内迁移的问题,中国科学院上海硅酸盐研究所研究员李驰麟团队在前期工作中已开发了锂驱动多硫化物正极转换反应的大容量双盐镁基电池(Adv.Funct.Mater.2015,25),同时提出了阴离子嵌入激活、反应中心外露的镁基电池体系(Adv.Funct.Mater.2015,25)。近日,该团队在动力学改善的镁硫电池研究中取得重要进展。研究人员选择金属有机框架化合物ZIF67为前驱体,制备了一种Co、N异质原子共掺杂的分级多孔碳作为硫宿主材料,实现了镁硫电池的倍率和循环性能的显著升级。在1C倍率下,该镁硫电池表现出优异的循环稳定性,首次放电容量可达600mAh/g,200次循环后容量仍保持在400mAh/g左右。在更高的5C倍率下,电池仍然具有300-400mAh/g的可逆容量。为继续提升电化学性能,研究人员采用还原氧化石墨烯修饰的隔膜来优化电池构架,进一步限制了多硫化物的穿梭,电池在0.1C电流密度下可运行250次循环以上,显著提高了镁硫电池的循环稳定性。镁硫电池优异的电化学性能受益于多重因素的协同作用,如异质掺杂有利于镁硫电池在充放电过程中多硫化物的吸附和催化分解,在非亲核性镁电解液中添加锂盐和氯离子有利于抑制镁负极表面钝化和提高电解液活性,充放电模式调节和隔膜修饰有利于缓减和控制多硫化物的损失,抑制其穿梭效应。

元素百科为您介绍三维打印构建骨/软骨一体化修复支架研究获进展。近日,中国科学院深圳先进技术研究院生物医药与技术研究所人体组织与器官退行性研究中心副研究员阮长顺课题组,与天津大学材料学院教授刘文广团队合作,在三维打印构建骨/软骨一体化修复支架研究中取得进展。该团队首次运用直接一步法3D打印技术构建生物活性梯度的高强度水凝胶,实现一体化仿生骨-软骨双相结构,并证实其体内外具有同时促进骨-软骨修复能力。 关节软骨本身没有神经及血管支配、且所含细胞量极少,损伤后很难实现自身修复。一旦软骨受到损伤,会累及软骨下骨,进而导致骨-软骨缺损。由于软骨和软骨下骨的生物学特性不同,导致骨-软骨一体化修复极具挑战。通常先分别制作骨和软骨组织仿生支架,再组装成骨-软骨一体化再生支架,实际中骨与软骨之间的界面结合力比较弱,难以满足应用需求。因此,如何快速构建仿生骨-软骨再生修复的一体化再生支架具有较大挑战。该研究团队发明了一种可直接3D打印的氢键增强的高强度水凝胶墨水。该墨水是基于丙烯酰基甘氨酰胺(PNAGA)共聚物超分子聚合物水凝胶,PNAGA共聚物水凝胶具有比其均聚物水凝胶更低的熔融温度和更好的流动性,可直接3D打印,无需光交联,打印后可快速固化成型并保持完好的宏观和微观结构。同时,研究团队模拟软骨-骨一体化结构,利用多喷头交替打印制备成底层含有β-TCP,顶部含有若干层负载生长因子TGF-β1的梯度支架。该生物杂化梯度水凝胶支架长期浸泡PBS后,仍保持稳定的孔隙结构和良好的机械强度,在高孔隙率下,压缩强度仍超过1MPa,循环压缩100次后,未发现强度下降和剥离。体内实验表明,该杂化梯度水凝胶支架可以同时促进软骨和软骨下骨再生。研究工作得到了国家自然基金、深圳市孔雀团队、广东省青年拔尖人才及深圳市科创委等的资助。