当前位置:新闻中心 > 医化热点
氨基酸在遗传特质中如何起作用
氨基酸在遗传特质中如何起作用
2014-08-29 16:51:46
第三方平台
基因内部以密码的形式记录了氨基酸的信息。氨基酸是有机体中蛋白质分子长链中的不同部分,而蛋白质分子长链则承担着对生存极其重要的任务。在50年代,科学家们提出的最引人注目的问题是怎样破译遗传密码。因为基因位于细胞核内部,而蛋白质位于细胞核外面、细胞质里面,所以有一点从一开始就已经清楚了:基因虽然获得了合成特定蛋白质的指令,但是她本身并不能合成蛋白质。因此,在细胞核的遗传信息和细胞内部的蛋白质合成之间必须要有一个信使。
现在被科学界成为“基因表达”的过程,是弗朗西斯·克里克最早描述了它的基本特点。1958年,这个著名科学家在一篇题为《蛋白质的合成》的报告中向实验生物学学会阐述了他的思想。
克里克假设,隐藏在DNA中的生物信息,首先转录到一个信使上,再由这个信使把信息从细胞核中取出,带入到细胞质里,然后在那里将氨基酸合称为蛋白质。克里克推测,是核酸的同类——核糖核酸担任着信使的作用。克里克还假设,所有细胞中传递生物信息的过程都是这样的。
克里克的“中心思想”,即指令链的顺序是“从DNA、通过RNA、再到蛋白质的”,直到现在,这一点仍然是分子遗传学的基本概念之一。
上一篇
下一篇
如涉及转载授权,请联系我们!
相关标签:
基因,
生物医学工程,
遗传学
相关阅读:
●
《科学报告》科学家创建简单高效棉花内源基因编辑筛选方法
元素百科为您介绍科学家创建简单高效棉花内源基因编辑筛选方法。近日,中国农业科学院棉花研究所棉花抗逆鉴定课题组创建了一种简单高效的耐盐相关内源基因编辑突变体筛选方法,应用CRISPR/Cas9系统精确有效地编辑棉花的两个耐盐相关的内源基因,为棉花的基因功能研究和分子育种提供了新思路。相关论文在线发表于《科学报告》。 对棉花靶标基因进行编辑CRISPR/Cas9来自微生物的免疫系统,其利用一种Cas9酶,把一段作为引导工具的小RNA识别靶标DNA位点,就能在此处对DNA进行切断或做其他改变。以往研究表明,CRISPR/Cas9系统可以在多种植物中对靶标基因进行高效编辑。作为异源四倍体棉花的陆地棉基因组大而复杂,获得目标基因突变体的难度非常大,耐盐性的研究是世界性难题,而CRISPR/Cas9系统为获得棉花耐盐突变体提供了非常好的思路。棉花内源基因编辑筛选科研人员研究发现,对选取的棉花两个与耐盐相关的内源基因GhCLA1和GhVP,CRISPR/Cas9在棉花的原生质体中表达后,两个基因靶标位点的突变大部分是碱基的替换,而在转基因棉花植株中,该系统造成的靶标位点突变大部分是碱基的缺失。研究还发现,CRISPR/Cas9系统在棉花细胞中具有目标特异性,即只瞄准那些为它们设定的目标基因。基于棉花基因组大而复杂的特点,该研究表明利用CRISPR/Cas9系统成功创建了一种对棉花内源基因编辑和筛选突变体的有效方法。
●
《癌细胞》白血病发病分子机制获突破性进展
元素百科为您介绍白血病发病分子机制获突破性进展。前不久,记者从中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室获悉,该实验室胡卓伟研究员团队最新研究发现,假性激酶TRIB3通过与原癌蛋白PML-RARα相互作用,维持了该蛋白的稳定,抑制p53介导的抗癌作用,促进急性早幼粒细胞白血病(APL)发病、疾病进展和对治疗的耐受。这一发现为APL的治疗提供了新的治疗概念和药物靶点。该成果于5月8日在线发表在国际权威科学期刊《癌细胞》上。 诱发白血病亚型的特点APL是由原癌蛋白PML-RARα诱发的白血病亚型,具有发病凶险、早期死亡率高的特点。目前临床广泛采用的全反式维甲酸(ATRA)和砷剂联合治疗方案。虽能明显改善疾病预后,但严重的毒副作用以及部分患者存在复发的现象,敦促研究人员进一步探索该疾病的发病机制、寻找潜在的治疗药物。现有研究表明,假性激酶Tribbles同源蛋白家族成员(TRIB1、TRIB2和TRIB3)可通过扮演应激反应感受器的角色,连接各种代谢应激因素参与多种炎症疾病和肿瘤的发生发展。TRIB1和TRIB2作为原癌基因促进急性粒细胞白血病(AML)的发病及其分子机制研究已被逐步阐明,但TRIB3与白血病之间的关系却鲜有提及。鉴于此,胡卓伟研究团队针对TRIB3蛋白进行多年研究发现,TRIB3不仅促进TGFB1介导的肿瘤侵袭和迁移,还作为纽带连接代谢危险因素与肿瘤进展。多种AML亚型患者骨髓组织高表达TRIB3,并且TRIB3表达量与APL疾病进展以及治疗的耐受呈正相关。APL发病分子机制研究团队利用三转基因小鼠模型进一步试验发现,敲除PML-RARα转基因小鼠的TRIB3后,小鼠不再发生APL。而敲入TRIB3的PML-RARα转基因小鼠APL发生率为100%,并且发病时间明显提前。此外,该研究还揭示TRIB3可抑制APL细胞内PML核小体的形成,妨碍APL细胞发生分化,维持APL起始细胞的自我更新能力。这一结果恰恰表明,TRIB3参与PML-RARα诱发的APL发病和疾病进展。此后,该团队研究人员还通过筛选得到了可靶向结合TRIB3的先导化合物,该先导物可以解除TRIB3与PML-RARα之间的相互作用。令人惊喜的是,将一段细胞穿膜肽与先导物融合后,新的嵌合分子可加速PML-RARα的降解,恢复PML核小体的数量,而且该嵌合分子在细胞和整体动物水平均显示出极强的抗APL作用。“阻断TRIB3与PML-RARα蛋白质间相互作用,不仅为APL治疗提供了新的思路和策略,同时这一研究在PML相关实体肿瘤的治疗上也将具有极大的应用前景。”胡卓伟表示,这项研究从全新角度阐释了APL发病的分子机制,不但鉴定和发现了TRIB3与PML-RARα相互作用这一肿瘤治疗的潜在新靶点,更研发出了靶向该相互作用的治疗性多肽,实现了分子机制研究与转化医学的有效衔接。据悉,此项研究成果主要由胡卓伟研究团队完成,并获得了多项国家自然科学基金和中国医学科学院医学与健康科技创新工程基金的资助。
●
我国水性涂料的四大应用领域市场现状及发展趋势
元素百科为您介绍我国水性涂料的四大应用领域市场现状及发展趋势。水漆就是以水为稀释剂、不含有机溶剂的涂料。具有节能环保、不燃不爆、超低排放、低碳健康等特点,可广泛使用在木器、金属、工业涂装、塑料、玻璃、建筑表面等多种材质上。以长远角度看,水性涂料进行涂装是未来发展的趋势。 我国水性涂料的应用领域分析分析认为,涂料企业纷纷发展水性工业涂料无疑对环境是个最大利好,还可以压低目前市场上国外水性工业涂料品牌价格,惠及国内消费者。但是,水性工业涂料是一个技术含量很高的环保高端产品,生产涂刷工艺上也有很大不同,涂料企业应该在这方面循序渐进,不能急于求成,否则让不成熟的水性涂料产品流向市场,整个水性工业涂料行业发展运作都会受到影响。下文是对我国水性涂料的应用领域分析。水性工业涂料主要应用于汽车、铁路车辆、桥梁管道、钢结构、集装箱等领域,目前国内工业涂料的水性化水平与工业发达国家相比存在着很大差距。汽车涂料:随着汽车工业的高速发展,汽车涂料的用量也在不断增长。自从2008年上海通用在上海推出第一条水性汽车涂料生产线以来,国内汽车涂料新建生产线全部以水性涂料来设计,水性涂料已经成为汽车涂料的主流。汽车涂料主要包括底漆、中涂、面漆,其中面漆又分为本色漆和金属闪光漆。汽车涂料的水性化进程是从底到面逐步进行的。早在20世纪60年代,欧、美等发达国家已经率先使用水性电泳底漆,目前底漆已有90%以上采用水性涂料,88%汽车中涂也已采用水性化技术,水性金属闪光底色漆的应用超过了65%。铁路车辆涂料:车身涂装大都使用传统的溶剂型涂料,其中大量含有的有机溶剂,给储运、施工带来不便和安全隐患。在溶剂型涂料生产和使用过程中释放的有害气体,更是会给生产员工的健康和大气环境造成不可忽视的负面影响。在发达国家,粉末涂料、100%固体含量液体涂料、水性涂料已成为铁路车辆制造业的主流涂料体系,其中水性涂料的应用越来越广泛。目前我国铁路货车领域已经成功应用华豹水性工业涂料涂装车辆13000多辆,产品经过5年以上验证,完全可以到达溶剂型产品质量标准;铁路机客车的水性化涂装体系的研制,华豹涂料公司也已经完成,并且开始涂装后上线测试。动车、高铁及轨道交通领域涂料的国产化、水性化进程,也已经进入铁总的工作计划中。重防腐涂料:日常生活中随处可见金属制品的腐蚀生锈,造成资源、能源的浪费,经济上的损失,有时甚至危及人身安全。根据美国、日本、加拿大等国公布的一些腐蚀损失资料,腐蚀造成的直接经济损失占国民经济总产值的1%~4%,每年腐蚀生锈的钢铁约占年产量的20%,约30%的设备因腐蚀而报废。我国每年金属腐蚀造成的经济损失约占国民生产总值的4%,如此惊人的损耗,刺激着防腐蚀涂料的发展。开发环保型工业重防腐涂料是全球许多发达国家涂料专家正在积极探索的高技术项目,在国内更是一个新兴的领域。在一些典型的重防腐涂料市场,如基础设施、石油和煤气、电力、桶槽、海洋和化学品工业,水性涂料的使用正在不断增加。用于重防腐领域的有水性醇酸体系、水性环氧体系(环氧云铁中涂和环氧富锌底漆)、水性无机富锌体系、水性环氧酯体系等。水性集装箱涂料:目前世界集装箱年产量超出350万只标准箱,年需涂料约40万吨,价值约60亿元。目前世界范围内使用的集装箱涂料多数都是溶剂型的,集装箱生产喷漆过程中,会产生大量的有害气体,不仅危害喷漆作业人员的身体健康,还会造成环境污染。随着环保法规日趋严格,国际集装箱标准化委员会对集装箱涂料的环保和卫生提出较高的要求:如涂料内不得含Cd、Pb、Cr、Hg等重金属;采用磷酸盐等无毒的颜料;高固体分、低VOC等。丙烯酸面漆替代氯化橡胶面漆、箱底专用漆也开始逐步推进。水性集装箱涂料在国内已经开始试点应用。